

### Diablo Winds in the Bay Area California: Their climatology and extremes

Yi-Chin (Karry) Liu<sup>1</sup>, Pingkuan Di<sup>1</sup>, Shu-Hua Chen<sup>2</sup>, Xue-Meng Chen<sup>1</sup>, John DaMassa<sup>1</sup>

California Air Resources Board University of California, Davis



# Motivations

- Strong linkage to wildfires in Northern California.
- Lacking understandings of long-term climatology of Diablo winds (DWs) and relationships with large-scale climate variabilities.

# **Study Goals**

- Document DWs climatology with a particular attention to extremes.
- Explore the relationship with large-scale climate variabilities from a climatological perspective.







- 3-hourly and daily NARR data from 1979 to 2018.
- Months of interest: September to February
- Area of interest: San Francisco Bay Area Air Basin.





# Data (Cont'd) NARR data distribution within the Bay Area



The Fosberg Fire Weather Index (FFWI) : measure the potential influence of weather on a wildfire based on temperature, wind and relative humidity

 $FFWI = n^{*}[(1+U^{2})^{.5}]/0.3002$ 

where U=wind speed in mph and n=moisture damping coefficient. n=1-2(m/30)+1.5(m/30)^2-0.5(m/30)^3

where m=equilibrium mositure content.

for h < 10 %

m=0.03229 + 0.281073h - 0.000578hT

for 10% < h <= 50%

m=2.22749 + 0.160107h - 0.01478T

for h > 50%

 $m=21.0606 + 0.005565 H^2 - 0.00035 hT - 0.483199 h$ 

where T=temperature in F and h=relative humidity in percent.



# Definition for DW events (DWEs)

- Average wind direction is northerly or northeasterly or southeasterly (350° to 135°)
- Average Fosberg Fire Weather Index (FFWI) is larger than 30
- First two criteria are met and persist for six or more consecutive hours

### **Three categories of DWEs:**

- Weak DWEs : 40 > maximum FFWI >= 30
- Moderate DWEs: (55> maximum FFWI >= 40)
- Extreme DWEs: (maximum FFWI >= 55)





# **Climatology: Overall Characteristics**

### 226 DWEs (Sep to Feb, 1979 to 2018)





# Climatology: seasonal variability







### **Diurnal variability**



-

22

-

\_

10

Hours (PST)

-

16

19

\_\_\_

13



### Long term trend for DWEs

#### Frequency

#### Sep S = 0, P = 0.76S = 0.03, P = 0.03 Oct Nov S = 0.01, P = 0.51 Number of DWEs per year Ω Dec S = 0.01, P = 0.7 S = 0, P = 0.96 Jan Ο Feb S = 0.01, P = 0.65

#### **Duration**





### The average frequency (event yr<sup>-1</sup>) of DWEs

|     | Before 1998      | After 1998        |
|-----|------------------|-------------------|
|     | (first 20 years) | (second 20 years) |
| Sep | <u>0.3</u>       | <u>0.6</u>        |
| Oct | <u>1.1</u>       | <u>1.6</u>        |
| Nov | 1.1              | 1.2               |
| Dec | 1.1              | 1.1               |
| Jan | 0.8              | 0.8               |
| Feb | 0.8              | 0.9               |

**Three categories of DWEs:** 

- Weak DWEs : 40 > maximum FFWI >= 30
- Moderate DWEs: (55> maximum FFWI >= 40)
- Extreme DWEs: (maximum FFWI >= 55)



### Relationship between DWEs and Climate Indices - Potential Predictability

- Low-frequency climate variabilities
  - North Atlantic Oscillation (NAO),
  - West Pacific Oscillation (WPO),
  - Arctic Oscillation (AO),
  - East Pacific Oscillation (EPO),
  - Pacific/North American teleconnection pattern (PNA)
- Intraseasonal variability
  - Madden-Julian oscillation (MJO)



# Ratio of DWE Occurrence over positive phase of climate indices





### Ratio of DWE Occurrence over eight MJO phases





### Mechanisms linking the PNA and MJO to the DWE occurrences

• Pressure gradient mechanism (a) SLP (hPa) and 10-m winds (m/s) 60°N 1022 1021 1020 1019 1018 50°N 1017 1015 1014 1013 Climatology 40°N 1012 1011 1010 (full fields) 1009 1009 1008 1007 1006 1005 1004 1003 1002 30°N 20°N 150°W 135°W 120°W 105°W 90°W 60N 50N DWE (anomalies) 40N -5 301 -6 -8 -9 -10 20N

140W

120W

100W



Jet steam displacement mechanism

### Mechanisms linking the PNA to the DWE occurrences



### Mechanisms linking the MJO to the DWE occurrences



16

# Conclusion

- Diablo Wind Events have strong seasonable variabilities for frequency, duration, and intensity. October has the highest frequency of DWE as well as extreme DWE cases.
- The diablo wind hour occurrence has increased significantly in late fall since 1998. This may imply a higher potential to cause wildfire due to the dryness in the late fall.

# Conclusion

- Negative phase of PNA with 1-day time lag and phase 7 of MJO with 1-day time lag show promising potential for DWEs predictability.
- PNA and MJO might modulate DWE development through two mechanisms: the pressure gradient mechanism, and the Pacific jet stream displacement mechanism.