

Challenges in simulating high air pollution concentrations during persistent cold air pool events

Xia Sun¹, Cesunica E. Ivey², Heather A. Holmes¹

1. Atmospheric Sciences Program, Department of Physics, University of Nevada, Reno, NV

2. Chemical and Environmental Engineering, University of California, Riverside, CA

Sep 12 2019, Davis, CA

Motivation: pollution in valleys

Cold air pool

- Topographic depression with cold air
- During wintertime in mountain areas

Stratified layer of pollution during a "**cold pool**" event near Salt Lake City, Utah. Erik Crosman (photographed December 19, 2009) *(Baker et al. 2011)*

Persistent Cold Air Pools (PCAPs)

Total number of the occurrences of PCAPs ≥3 days during 1979 to 2012

Valley Heat Deficit

$$H22 = c_p \int_{sfc}^{2200} \rho(z) \left[\theta_{2200m} - \theta(z)\right] dz$$

- Bulk measure of atmospheric stability
- Energy per unit area (J m⁻²) required to warm a column of air to the potential temperature at height z.
 - c_p: specific heat capacity of air;
 - p: air density
 - θ: potential temperature;
 - z: altitude

(Utah, 2010-2011, PIs: C. David Whiteman et al.)

Focusing on meteorology

ISFS: surface energy balance HW: routine air quality site ISS: sounding site

(Sun et al. 2019)

Figure 1 Topography map of SLV and measurement sites

The Persistent Cold Air Pool Study

PCAP: H22 > 4.04 MJ m⁻² lasting for more than one day (Whiteman 2014)

CAPs are accompanied by high PM_{2.5} (Sun et al. 2019)

WRF Model Configurations (v3.7)

- Microphysics: Thompson scheme
- Longwave radiation: RRTM
- Shortwave radiation: Dudhia
- Convective precipitation: Kain-Fritsch 2
- Lage-scale forcing dataset: NAM reanalysis with 3-hr forecasting
- Observational nudging: Outer domain

Experiment	Surface Layer Scheme	Land Surface Model	Planetary Boundary
			Layer Scheme
NAM_ACM2	Pleim-Xiu (<u>Pleim 2006</u>)	Pleim-Xiu (<u>Pleim and Xiu 1995</u>)	ACM2 (<u>Pleim 2007</u>)
NAM_YSU	Revised MM5 (Jiménez et al. 2012)	Noah (<u>Ek et al. 2003</u>)	YSU (<u>Hong et al. 2006</u>)
NAM_MYJ	Eta similarity (<u>Janić 2001</u>)	Noah	MYJ (<u>Janić 2001</u>)
NAM_MYNN	MYNN (<u>Nakanish 2001</u>)	Noah	MYNN (<u>Nakanishi and</u> <u>Niino 2004</u>)

CMAQ Model Configurations (v 5.2)

The Community Multiscale Air Quality Modeling System, (U.S. EPA)

- Resolution: d01: 12km, d02: 4km, 41 vertical layers
- Emissions: 2011 National Emissions Inventory (Kirk Baker, U.S. EPA)

Mechanism:

- --Carbon bond 6 (CB6), revision 3 gas-phase mechanism
- --sixth-generation CMAQ aerosol mechanism with sea salt and speciated PM other
- --aqueous phase chemistry

Valley heat deficit (H22) in Jan 2011

PCAP: H22 > 4.04 MJ m⁻² lasting for more than one day (Whiteman 2014)

Gaseous Pollutants

- Overestimated NOx and H22 contribute to overestimated PM_{2.5} during non-PCAPs
- High PM_{2.5} during PCAP3 was attributed to high H22

modeled vs observed PM_{2.5} concentration

PM₂₅ chemical composition **PCAPs Non-PCAPs** 50 -30 **PCAPs** Other Non-PCAPs OC EC 40 NH 21.0% NO₂ Concentration ($\mu g m^{-3}$) 0 0 $|{\rm SO}_4^2|$ 10.4% 21.3% 3.8% 21.5% 21.2% 21.0% 17.0% 20.8% 21.2% 21.0% 20.9% 35.6% -----33.3% ----34.8% 32.9% 25.0% 34.0% 35.5% 36.0% 34.9% 15.4% 42.1% 10 16.6% 18.2% 7.6% 18.8% 18.5% 16.7% 17.5% 11.5% 18.7% 17.4% 6.4% 6.1% 5.9% 5.7% 5.2% 5.4% 5.8% 5.1% 20.5% 19.3% 35.1% 18.2% 18.1% 18.9% 16.4% 17.5% 5.8% 16.3% 2.5% 2.7% 0 2 9% 2.3% 5.4% 0 ----2.8% 2.4% 2.6% 2.4% OBS ModACM2 ModYSU ModMYJ ModMYNN

OBS

ModACM2

ModYSU

During PCAPs: Observed main component: nitrate, ammonium Modeled main component: OC, nitrate ModMYNN

ModMYJ

Modeled Nitrate formation

Nitrogen ratio variation with PM_{2.5} concentrations

- NH₄NO₃ formation in SLV during wintertime was mainly in excess of reduced nitrogen and limited by HNO₃(g).
- Reverse behavior of the variation of nitrogen ratio with increasing PM_{2.5} concentrations

N Summary

The CMAQ model simulated elevated PM_{2.5} concentrations during PCAP events but underestimated the magnitude

- Emissions: The NO_x level was overestimated in the CMAQ model for both PCAP and non-PCAP scenarios using the 2011 NEI
- Meteorology: Less simulated PCAP strength contributes to the underestimated PM_{2.5} concentration
- Chemistry: Underestimated ammonium nitrate formation contributes to the underestimated PM_{2.5} concentration

Challenges in forecasting PCAP

Illustration of surface and PBL processes

Model Challenges

- Difficult to replicate the multiday stagnant conditions (Baker et al. 2011)
- Complex terrain
 - Land-atmosphere exchange needs to be well addressed

Strong PCAP case (IOP5)

Sensible heat flux

Surface exchange coefficient under stable conditions

 All of the WRF scenarios generated an overestimation of CH, except for the NAM_MYJ case. **Bulk transfer equation:**

$$H = \rho c_p C_h U_a (T_s - T_a)$$

ρ: air density
cp: specific heat capacity of air
Lo: is air wind speed

Ua: is air wind speed Ts and Ta: surface and air temperature

Thanks! Questions?

Simulated (contoured) and observed (dots) daytime surface sensible heat fluxes for IOP5

