Connecting Ozone exceedances in Houston TX to variability in emissions and meteorology: Implications for federal attainment

William Vizuete <u>www.unc.edu/~vizuete</u> vizuete@unc.edu

Jeffries H.E., Rasool Q., Couzo E., Nielsen-Gammon, J.

GILLINGS SCHOOL OF GLOBAL PUBLIC HEALTH

- 4th Largest City in USA
- Houston Ship Channel
- Coastal Impacts
- 30° Latitude
- Year 2000

2004 Ozone Conceptual Model

- Ozone formation stems from two types of emissions:
 - Routine associated with an urban core
 - Fluctuations from short-term industrial VOC releases.
- Ozone design values driven by a combination of both types of emissions.
- Routine modeling addresses first type
- Weight of Evidence argument for VOC controls of ethene, propene, butenes, 1,3-butadiene

Texas Commission on Environmental Quality HGB Mid-Course Review SIP (2004-042-SIP-NR) 3

Focus On VOCs

- VOC Cap and Trade
- IR Cameras
- Event Emission Reporting (STEERS)
- Monitoring
- Special Emission Inventory

http://www.tceq.texas.gov/airquality/airsuccess/air-success-criteria

5

Ozone Design Values

Ozone Design Values

Houston Ozone Attainment

- Is Houston still a two ozone city?
- Are VOCs still relevant?
- Has Meteorological conditions changed?
- Can regulatory model capture observed phenomena?
- Attainment of 70 ppb?

Houston Data

Observations 2000-2015

Regulatory Air Quality Model 2012

• Found *necessary* conditions

Looking for a *sufficient* condition

Meteorological Analysis

Necessary Conditions

Presentation at the TexAQS II Intensive Field Study Meeting October 11 – 12, 2005

Air Trajectory Tools and Theoretical Analysis of the Houston-Galveston Area Land/Sea Breeze

Daewon W. Byun¹, Seung-Bum Kim^{1*}, Fantine Ngan¹ Soontae Kim¹, and Bonnie Cheng¹

> Institute for Multidimensional Air Quality Studies University of Houston

* Present Affiliation: Global Environmental Laboratory, Yonsei University

H19 Final Report, Real-Time Trajectory Analysis Operation and Tool Development

Used by permission Dr. Kim 2019

Governing set of layer-mean momentum equations in the mixed layer model

Gutman and Berkofsky (1985); Byun and Arya (1990) →

[1] Local tendency

[2] Advection

[3] Coriolis forcing

- [4] Large-scale pressure gradient (or geostrophic) forcing
- [5] Local thermal forcing

[6] Turbulent drag – Quadratic friction (no entrainment assumption)

Observed Wind Vectors

2000 - 2014 Average 1-h Hodograms for Exceedance and Non-exceedance Days at 27 HGA Monitors

15

Acoustic Profiler Data

- NOAA Profiler Network
- June 1, 2005 October 31, 2006
- Composite 500 m AGL trajectories
- Arriving at 0000 UTC (6PM LST) based on winds preceding 24 hours.
- Average of hourly winds during all warm-season (May-October) days in which the vector mean wind speed over the 24-hours <3 m/s (10.8 km/h).

N 40 30 H03H OX Days 30 HRM-3 Haden Rd BR BX Days 9X Days 48-201-0803 40 2015-04-01 NW NE 2015-10-31 211 days 40 30 30 4Q 10 20 30_E W 4Q 30 30 SW SE 40 30 30 W to E = 50.7% of days S to N = 59.7% of days 40 s

Days by Morning Winds, Daily Wind Quads, and Ozone Exceedances

Observed Ozone and Wind Direction

21

Observed Ozone and Wind Vectors

22

Observed Ozone and Transport Distance

Observed Ozone and Transport Distance

O3(8H) Max at 00-06 HH Transport Distance

Displacement Distance

Meteorological Results

- Identified "necessary circulation conditions"
- Highest exceedances <25 km transport distances
- Frequency of 3-4 quadrant days unchanged
- Need "sufficient conditions" to create exceedances.

Ozone Analysis

Sufficient Conditions

Emission Event Database (STEERS)

Missing Emissions

Observed VOC Concentrations

Observed Ozone Plumes

June 3, 2015

Observed Ozone Plumes

June 3, 2015

1 pm 131 ppb H03H

2 pm 133 ppb H03H

Sufficient Conditions

• Ozone produced on these days are very likely the result of local emissions.

 Identified a consistent presence of elevated concentrations of VOCs primarily alkanes and aromatics

• Some alkenes - emission event database.

Ozone Attainment

Modeling Episode and Configuration

Episode

- Base year: May Sep 2012
- Future year: 2020
- Domains: 36, 12, 4 kilometers
- CAMx 6.5 with CB6r4h chemical mechanism
 - Update from 6.31
- WRF 3.7.1
 - No change

CAMx = Comprehensive Air Quality Model with extensions; WRF = Weather and Research Forecasting

Air Quality Division • TCEQ HGB SIP Modeling • DB • July 15, 2019 • Page 5

Predicted Wind Quadrants (Q) and O₃ 1-H and 8-H Exceedances (X) Observed Wind Quadrants (Q) and O_3 1-H and 8-H Exceedances (X) 4Q-9X 4Q-8X 4Q-1X 4Q-8X H03H H03H HRM-3 Haden Rd HRM-3 Haden Rd 1Q-0X 48-201-0803 48-201-0803 2012-05-01 2012-05-01 4Q-0X 1Q-0X¹⁵² days 152 days 3Q-8X 7.3% 4Q-0X (11)20.4% (31)1Q-8X 0.7% 3Q-0X 18.4% 2Q-0X (28)(1)3Q-9X 29.1% (44)2Q-8X 3Q-0X 2Q-0X PREDICTION **OBSERVATIONS** 37

Monitored Morning Winds, Daily Wind Quads, and Ozone Exceedances

Predicted Morning Winds, Daily Wind Quads, and Ozone Exceedances

PREDICTION

OBSERVATIONS

40

EPA Attainment Methodology

- Modeling Guidance for Demonstrating Air Quality Goals for Ozone, PM_{2.5} and Regional Haze.
- Prior to 2018 fundamental assumption
 - Ozone exceedance variability in Meteorology not emissions.
- 2018 document less emphasis

Ozone Modeling in SIP Development

One Year Typical Development

Day-specific emissions and meteorology; replicate what actually happened

Typical emissions and day-specific met; used in RRF to predict future design values

Apply future growth + on-the-books controls to estimate future ozone precursor emissions

Determine control strategies that will effectively reduce ozone (if applicable)

Document modeling results and procedures

EPA 8-Hr Ozone Attainment Method

EPA's 8-hr attainment test methodology is fundamentally incapable of effectively dealing with certain moderate-to-peak O_3 formation processes in Houston that contribute to DVf's

The model's mean Relative Reduction Factor is calculated at each monitor, m, as

Houston Ozone Attainment

- Is Houston still a two ozone city?
- Has Meteorological conditions changed?
- Are HRVOCs still relevant?
- Can regulatory model capture observed phenomena?
- Attainment of 70 ppb?

Next Steps

- Alkane Sources?
- Controls?
- How does model make ozone 1Q,2Q?
- How to fix predicted meteorology?
- Can regulatory model capture observed phenomena?

Questions? <u>www.unc.edu/~vizuete</u> <u>vizuete@unc.edu</u>