EXPLORING FUTURE CLIMATE EFFECTS ON WESTERN US AIR QUALITY

Kai Fan¹, Brian Lamb¹, Jeremy Avise¹, Jerome Fast², Joseph Vaughan¹, Von Walden¹, Rahul Zaveri², Christopher G. Nolte³, Alex Guenther⁴ and Yunha Lee¹ ¹Laboratory for Atmospheric Research, Department of Civil and Environmental Engineering, Washington State University (WSU), Pullman, WA. ²Pacific Northwest National Laboratory, Richland, WA. ³Office of Research and Development, US Environmental Protection Agency, Research Triangle Park, Triangle Park, NC. ⁴Department of Earth System Science, University of California, Irvine, CA.

INTRODUCTION

Air quality regulations have reduced emissions of air pollutants in the US, but previous studies suggest that the future air quality might be degraded by climate change (Chen et al., 2009; Gonzalez-Abraham et al., 2015; Nolte et al., 2018). Those studies were typically based on computationally expensive 3D Eulerian chemical transport models CTMs. To study how future air quality at a local scale will be influenced by global factors in an efficient way, we have developed a Lagrangian air quality modeling framework, called HYSPLIT-MOSAIC (H-M). It consists of HYSPLIT, an air trajectory model developed by NOAA (Stein et al., 2015), and MOSAIC, a gas and aerosol chemistry and dynamics model developed at PNNL (Zaveri et al., 2008).

METHOD AND DATA

M

To simulate future air quality in H-M at specific locations, we applied HYSPLIT cluster analysis to generate representative back trajectories for each site using historical NAM meteorology data. Next, we employed 4km gridded statistically downscaled climate data (i.e., MACA, Abatzoglou & Brown, 2012) from 20 CMIP5 GCMs for two future climate scenarios (RCP4.5 and RCP8.5). The present-day and future anthropogenic and biogenic

RESULTS

We evaluated the historical simulations of July from 1995-2005 at two AQS sites of Seattle and Sacramento. Because the historical MACA data are close among GCMs, so we chose one GCM for historical period. Note that median values are used to describe the changes in this study. Seattle

Obs

	T (C)		RH (%)	
	Obs.	Mod.	Obs.	Mod.
	Seattle			
25%	15	16	55	54
Median	18	19	69	63
75%	21	23	80	70
	Sacramento			
25%	18	20	36	27
Median	23	26	53	40
75%	30	32	70	58

Fig. 3 MACA temperature (T) and relative humidity (RH) at Seattle and Sacramento in July of 1995-2005 against observation

The model T is 1-3 °C higher than observations, and the model RH is 7-13% lower.

The simulated O_3 is 8-13 ppb higher than observations,

The distributions of simulated O_3 and PM2.5 are similar

Nolte et al., 2018. The potential effects of climate change on air quality across the conterminous U.S. at 2030 under three Representative Concentration Pathways (RCPs). Atmospheric Chem. Phys. Discuss. 1–32. https://doi.org/10.5194/acp-2018-510 Stein et al., 2015. NOAA's HYSPLIT Atmospheric Transport and Dispersion Modeling System. Bull. Am. Meteorol. Soc. 96, 2059–2077. https://doi.org/10.1175/BAMS-D-14-00110.1 Zaveri et al., 2008. Model for Simulating Aerosol Interactions and Chemistry (MOSAIC). J. Geophys. Res. Atmospheres 113, D13204. https://doi.org/10.1029/2007JD008782

Mod.

87

Mod

20

CONCLUSION AND FUTURE PLANS

- of O_3 and 5% of PM2.5.

Kai Fan: kai.fan@wsu.edu Yunha Lee: yunha.lee@wsu.edu

WASHINGTON STATE [JNIVERSITY

a peak at 30-40 ppb, while 2050s PM2.5 is 1 μ g/m³ lower at Salt Lake City and 1 μ g/m³ higher at Boise with more high PM2.5 events.

Between two GCMs in 2050s, O₃ varies by 0.09-0.16 ppb (0.3%-0.5%), and PM2.5 by 0.01-0.06 μ g/m³ (0.2%-2%). Generally, O₃ is 0.04-0.12 ppb (0.1%-0.4%)lower under RCP8.5, but the PM2.5 is $0.01-0.04 \mu g/m3$ (0.5%-1.5%) higher under RCP8.5.

Our 2050s future O_3 shows 5-20 ppb increase in the median value in all cases but the changes in PM2.5 depends on sites and season.

Air quality is very similar in the all future runs used here, but using two GCMs adds 1% variation of O_3 and 3% of PM2.5, and using two RCPs adds 1% variation

The biogenic emissions vary with meteorology, but it is not included in this study yet. We plan to run MEGAN biogenic emission model with MACA meteorology in order to better estimate the influence of future meteorology on air quality.