

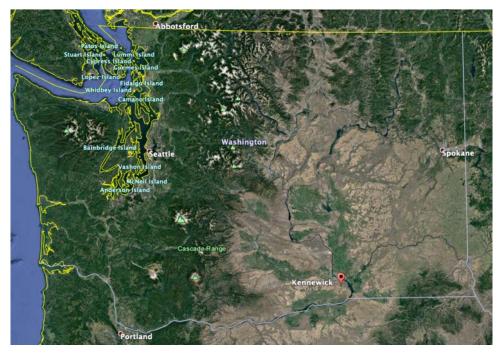
A Machine Learning Approach for Ozone Forecasting and its Application for Kennewick, WA

Kai Fan¹, Brian Lamb¹, Ranil Dhammapala², Ryan Lamastro³, and Yunha Lee¹

¹Laboratory for Atmospheric Research, Civil and Environmental Engineering, Washington State University ²Washington State Department of Ecology ³State University of New York at New Paltz

Motivation

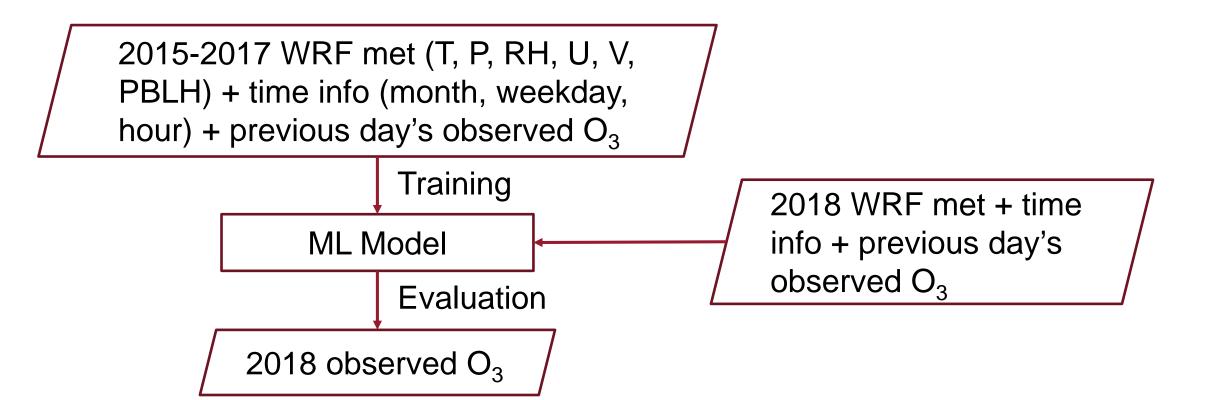
- Kennewick, WA lies 32 km (20 mi) north of Washington's southern border, where high O₃ events occur during summer and fall.
- AIRPACT is a state-of-the-science CMAQ-based air quality forecasting system for Pacific Northwest. However, AIRPACT struggles to predict high O₃ concentrations in this area.



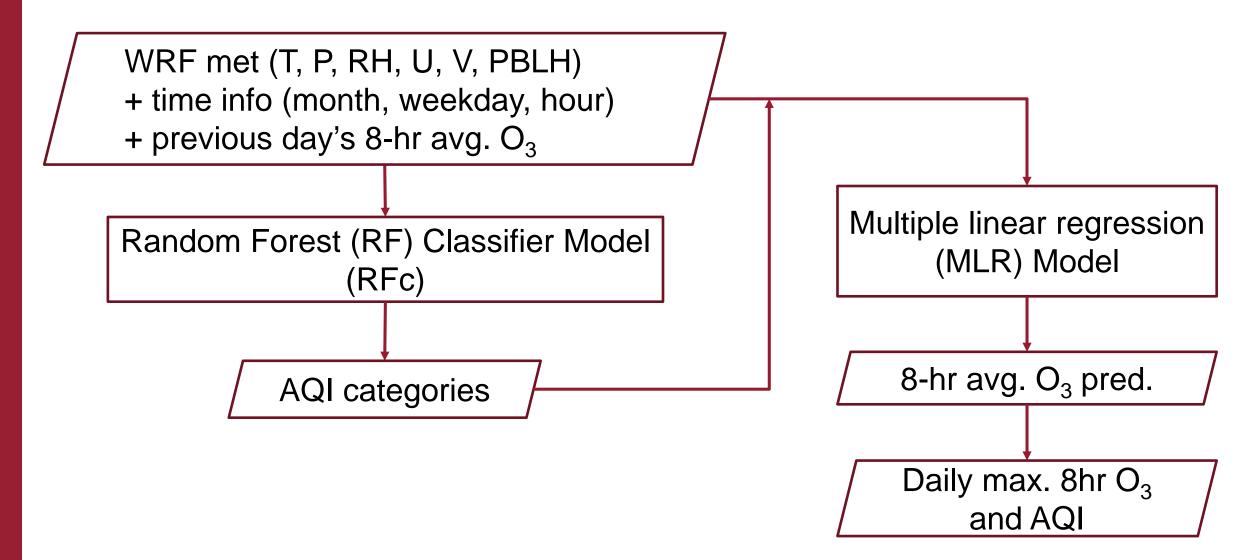
*Image from Google Earth

 The goal of our study is to provide a reliable forecast for high O₃ events using the machine learning (ML) models, which can learn from the historical data to make future forecasts.

Machine Learning (ML) Model Approach for the Kennewick Monitoring Site

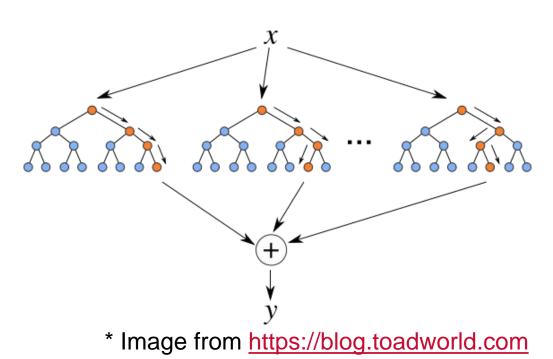


Machine Learning Model Framework 1: ML1 Combining Random Forest and Multiple Linear Regression methods



Random Forest (RF) classifier

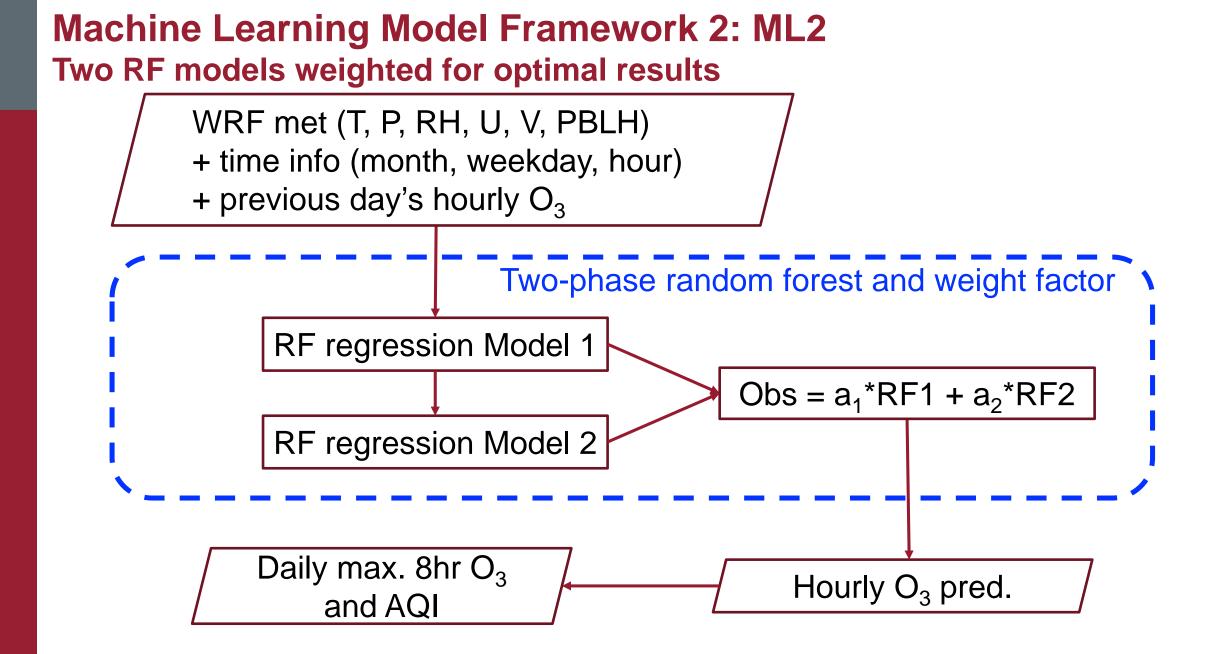
 RF classifier is the consensus of many decision trees, which we use to predict the AQI categories.



Multiple linear regression (MLR)

 $Y = a_0 + a_1 X_1 + a_2 X_2 + a_3 X_3 + \dots$

 MLR approach is used to predict the 8-h average O₃, which shows good performance to predict high O₃ days.

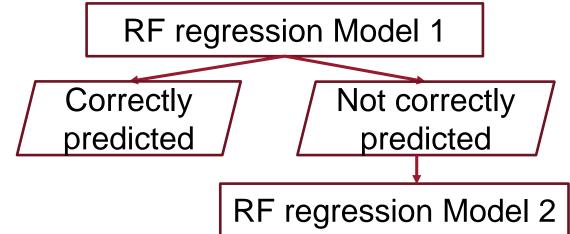


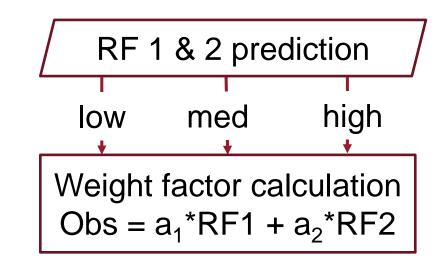
^{*} Jiang, N., & Riley, M. L. (2015). Exploring the utility of the random forest method for forecasting ozone pollution in SYDNEY. *Journal of Environment Protection and Sustainable Development*, 1(5), 245-254.

Two-phase random forest (RF)

 The first RF model can usually make right prediction for low O₃ events, and the second phase isolates the events incorrectly predicted to form a second training dataset.

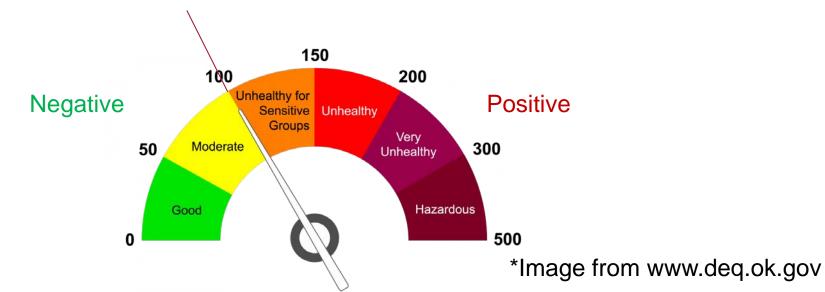
 We separate the initial predicted mixing ratios to three categories and give three sets of weight to two phases. The weight of two models are based on a simple linear regression equation.





Forecast evaluation metrics

Metric	Description	
Hits	True positive/negative	
False Alarms	False positive	
Misses	False negative	
FAR (False Alarm Ratio)	# of false alarms	
	total # of events forecast	
POD (Probability of Detection)	# of hits	
	total # of events forecast	



Historical data summary

	Voor	Simulated	# of days for each AQI				
	Year	days	1	2	3	AQI > 2	
	2015	106	75	27	4	4%	
	2016	143	125	16	2	1%	More fires
	2017	114	71	35	8	7%	
	2018	152	120	26	6	4%	
	Total	515	391	104	20	4%	

ML1 Evaluation

Leave one out cross validation

Metric	2015	2016	2017	2018
Hits	94 (<mark>100</mark>)	127 (<mark>130</mark>)	99 (<mark>92</mark>)	138 (<mark>140</mark>)
False Alarms	8 (1)	4 (<mark>0</mark>)	4 (6)	5 (<mark>0</mark>)
Misses	1 (<mark>2</mark>)	1 (<mark>2</mark>)	2 (7)	2 (<mark>5</mark>)
FAR	8% (<mark>1%</mark>)	3% (<mark>0%</mark>)	4% (5%)	3% (<mark>0%</mark>)
POD	91% (<mark>97%</mark>)	96% (<mark>98%</mark>)	94% (<mark>88%</mark>)	95% (<mark>97%</mark>)

The numbers in parenthesis are the AIRPACT forecast performance.

- ML1 predicts more false alarms but fewer misses.
- For high O₃ year 2017, ML1 performs better than AIRPACT.

ML2 Evaluation

Leave one out cross validation

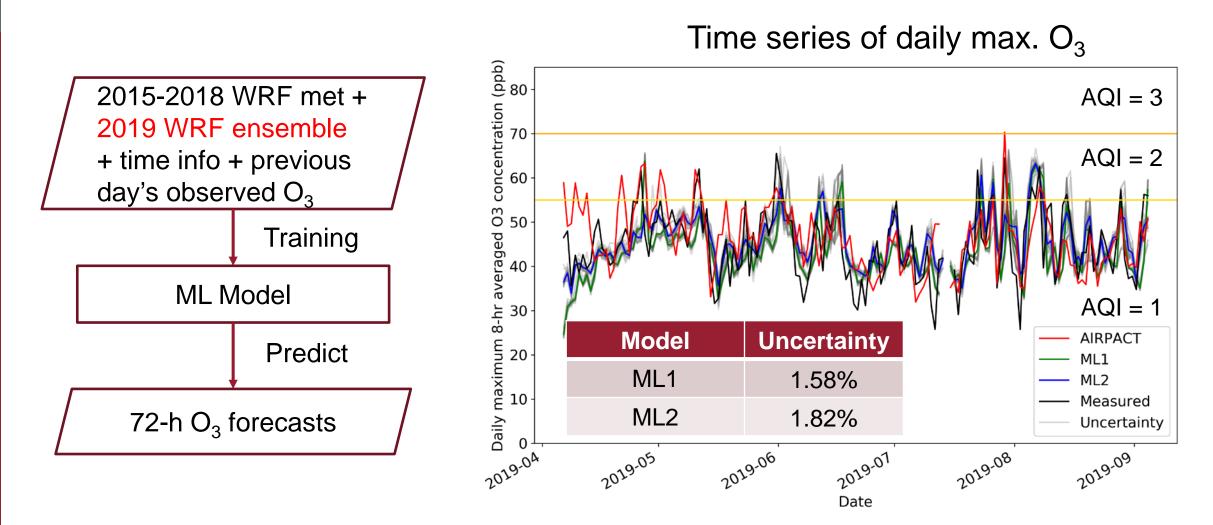
Metric	2015	2016	2017	2018
Hits	99 (<mark>100</mark>)	130 (<mark>130</mark>)	97 (<mark>91</mark>)	140 (<mark>14</mark> 1)
False Alarms	1 (1)	0 (<mark>0</mark>)	0 (6)	1 (<mark>0</mark>)
Misses	3 (<mark>2</mark>)	2 (<mark>2</mark>)	7 (7)	5 (<mark>5</mark>)
FAR	1% (<mark>1%</mark>)	0 (<mark>0</mark>)	0 (<mark>6%</mark>)	1% (<mark>0</mark>)
POD	96% (<mark>97%</mark>)	98% (<mark>98%</mark>)	93% (<mark>88%</mark>)	96% (<mark>97%</mark>)

The numbers in parenthesis are the AIRPACT forecast performance.

- ML2 predicts much fewer false alarms but similar miss number as AIRPACT.
- Both AIRPACT and ML2 fail to predict the high ozone days in 2017.

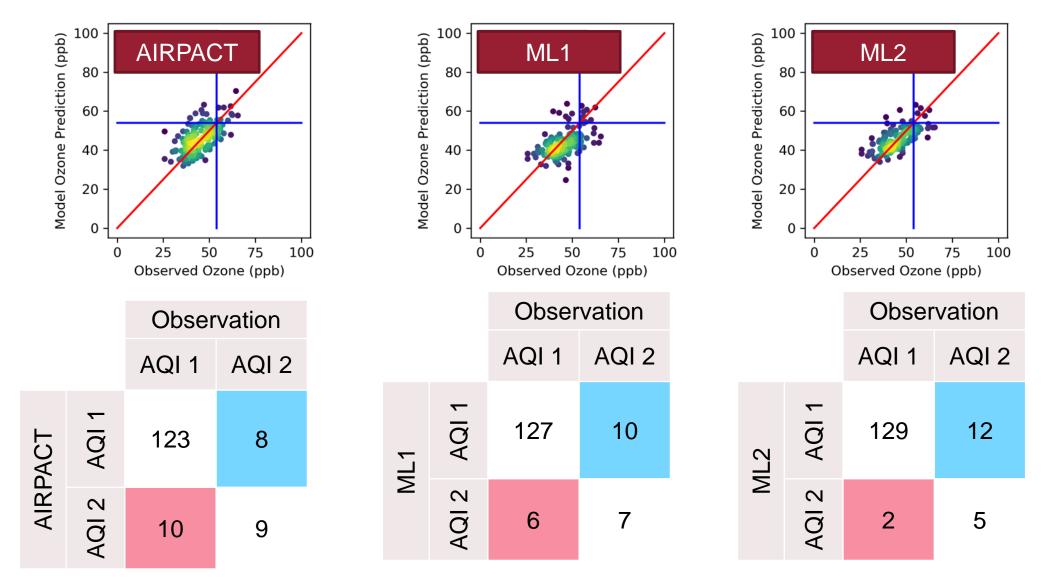
Tri-Cities Ozone "Ensemble" Forecast in 2019

Ē



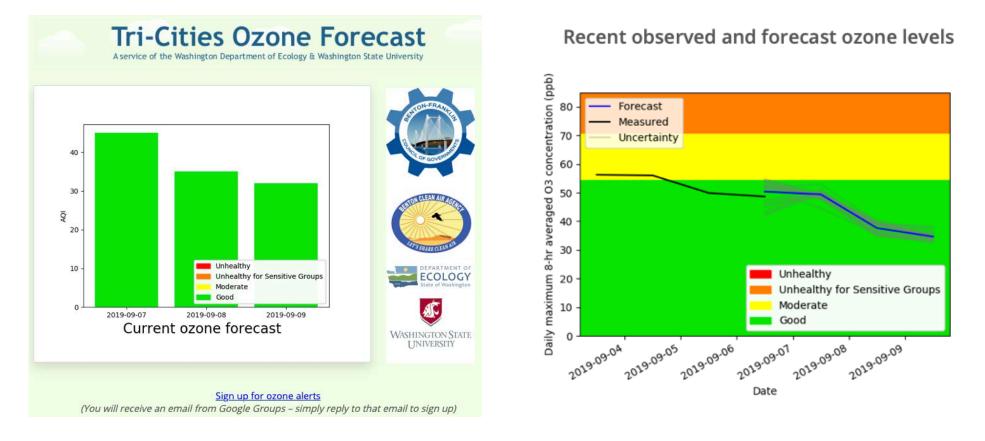
To get more data to train the model, we retrain our model everyday including previous day's measurements.

Tri-Cities Ozone (ensemble mean) Forecast in 2019



ML2 performs the best to reduce false AQI2 days (in red cells). Thus we chose ML2 to run our operational daily ozone forecasting for Kennewick.

Our Machine Learning O₃ forecasts go public everyday!



http://ozonematters.com/

Summary

- The ML1 model raised more false alarms than AIRPACT, but performed better in the high ozone year.
- Both ML2 and AIRPACT missed some high ozone events, but ML2 raised fewer false alarms than AIRPACT.
- Our training dataset contains only a few high O₃ days, which makes it difficult to predict a high O₃ day using a ML approach. To overcome that issue, we updated the training dataset each day.
- We plan to apply our ML models to other cities that has a welldistributed AQI (Air Quality Index) values.

Thank you!