UNCLASSIFIED

Large-Eddy Simulation and Lagrangian Two-Particle Modeling of Mean and Fluctuating Concentrations in the Atmospheric Boundary Layer

> Jeffrey Weil National Center for Atmospheric Research, Boulder, CO

Collaborators: P.P. Sullivan, E.G. Patton, and A. Wyzogrodski

Sponsored in part by U.S. Defense Threat Reduction Agency and U.S. Army Research Office

For presentation at the MAC-MAQ Conference Davis, CA, 11 – 13 September, 2019

UNCLASSIFIED

Background

- Importance of statistical variability
 - Estimate peak concentrations—toxics, air quality, odors, chemistry, etc.
 - Need: mean, variance, probability distrib.
- Statistics for variable averaging time, T_{av}
 - Requires "relative dispersion" of plume
- Approach
 - Lagrangian two-particle dispersion model (L2PDM) driven by large-eddy simulations (LES) of the convective boundary layer (CBL)
- Goal
 - Generate dispersion realizations & statistics for T_{av} 's: 40 s 30 min
 - Demonstrate applicability of L2PDM to mean & fluctuating concentrations with convection tank data
 - Provide numerical data for testing simpler models

Background

- Importance of statistical variability
 - Estimate peak concentrations—toxics, air quality, odors, chemistry, etc.
 - Need: mean, variance, probability distrib.
- Statistics for variable averaging time, T_{av}
 Requires "relative dispersion" of plume

igure 14. Keystone plume, May 25, 1968, 1047 EST.

- Approach
 - Lagrangian two-particle dispersion model (L2PDM) driven by large-eddy simulations (LES) of the convective boundary layer (CBL)
- Goal
 - Generate dispersion realizations & statistics for T_{av} 's: 40 s 30 min
 - Demonstrate applicability of L2PDM to mean & fluctuating concentrations
 - Provide numerical data for testing simpler models

Generation of Concentration Fluctuations

Meandering Plume Model (Gifford 1959)

Concentration Fluctuation Intensity (Csanady 1973)

Short times

$$\sigma_i^2 = \sigma_r^2 \propto \epsilon t^3 \quad t \ll T_L$$

$$\sigma_m = \sigma_{vm} t$$

(Batchelor,1950) (Csanady,1973)

Lagrangian 1- & 2-Particle Dispersion Models

2-particle model Particle Path Particle Path Particle Path Particle Path 2r 1 1 2r 1 2r 1 2r 1 1 2r 2r 2r 1 2r 2r2r

 $u_{\rm Ri}$ = resolved LES velocity, particle *i* $u_{\rm Si}$ = stochastic subgrid-scale (SGS) velocity Adopt Thomson's (1990) stochastic model for $u_{\rm Si}$

Concentration

$$c(\mathbf{x},t) = Q \int p_1(\mathbf{x},t;\mathbf{x}_{S1},t_1')dt_1'$$

$$\uparrow_{t=nT_{av}}$$

LPDMs Driven by LES

- Large-Eddy Simulations (LES) (Moeng & Sullivan, 1994, NCAR LES; Prusa et al, 2008, EULAG)
- CBL Setup:

5 km X 5 km X 2 km domain 96³ grid points

$$z_i = 1000 \text{ m}, w_* = 2 \text{ m/s},$$

 $z_i/w_* = 500 \text{ s}, U = 3 \text{ m/s}, U/w_* = 1.5$
Highly convective: $-z_i/L = 106 \text{ (NCAR)}$
 $= 78 \text{ (EULAG)}$

 500 stored LES data files (NCAR) at 10 s intervals 210 files (EULAG)

 $\begin{array}{lll} \text{Subgrid TKE} & \text{Dissipation rate} \\ e_s & \epsilon = c_e e_s^{3/2}/\ell \end{array}$

Crosswind-Integrated Concentrations (CWIC, C^y) $z_s = 0.07 z_i$, $T_{av} = 30 min$, L1PDM (Weil et al., 2012, BLM)

2-Particle LPDM: Relative Dispersion

Vertical Profiles of Concentration Fluctuation Intensity, σ_c/C

Convection Tank Data, $z_s = 0.15z_i$ (Weil et al., 2002)

Surface Mean CWIC & Fluctuation Intensity Short Duration Line Source (SDLS), $0 \le t_r \le 0.2t_*$ L2PDM vs Convection Tank Experiments (Hibberd, 2000)

Surface Mean Concentration & Fluctuation Intensity

Along plume centerline (y = 0)

 $T_{av} = 0.12 t_{\star}$

Concentration Fluctuation Intensity at Surface: L2PDM vs Lab Data, Multiple Source Heights

Concentration Fluctuation Intensity at Surface: Averaging Time Effect

 $\left(\frac{\sigma_c}{C}\right)^2 = \frac{2(\sigma_{ci}/C)^2}{T_{av}} \cdot \int_0^{T_{av}} (1 - t/T_{av})\rho_c(t)dt \quad \text{(Tennekes & Lumley, 1972)}$ $\sigma_c = \sqrt{2}\sigma_{ci} \ (\tau_c/T_{av})^{1/2} \qquad T_{av}/\tau_c \gg 1$

 $z_s/z_i = 0.07, y = 0, X = 1.55$

Concentration Fluctuation Intensity at Surface: Averaging Time (T_{av}) Effect

Peak Surface Concentration as Function of T_{av}

Cumulative Distribution Function (CDF) of Concentration Fluctuation, $(c - C)/\sigma_c$

$$z_s/z_i = 0.07$$
; $y = z = 0$; $X = X_{mx} = 0.125$

Cumulative Distribution Function of Concentration Fluctuations

Weil et al. (1992)

Applications: Estimate C_{peak}

- Parameterized CDF
 - Mean (C), Rms ($\sigma_{\mathbf{c}}$), CDF shape
 - Compare L2PDM and Gamma CDFs
- Estimate $\sigma_{\mathbf{c}}$ with simpler model
 - Lagrangian "1-particle" model (e.g., Manor, 2014; Ferrero et al, 2017, 2019)
 - Extended meandering plume for T_{av} effects
 - Compare with L2PDM results

Extended Meandering Plume for T_{av} (Sykes, 1984) Short times/distances: $\sigma_i^2 = \sigma_0^2 + \alpha \epsilon t^3$, $\sigma_m = \sigma_{vm} t$

 $z_s/z_i = 0.07; y = z = 0$

Summary

- L2PDM matches mean CWIC and surface concentration fields of earlier 1-particle model and laboratory data in a CBL
- Modeled concentration fluctuation intensity agrees with convection tank fluctuation intensity profiles
- L2PDM gives fluctuation intensity, probability distributions of c, and c_{peak} as function of T_{av} over 60 s 2090 s (35 min)
- L2PDM provides data for testing simpler models and applications

Further Work:

Finer resolution LES (CBL) and greater simulation time Finer resolution LES and higher wind speeds (U/w_{*} > 1.5) Weakly stable boundary layer

Concentration Fluctuation Intensity vs T_{av}: Comparison with Field Data

Background

- Importance of statistical variability
 - Estimate peak concentrations—toxics, air quality, odors, chemistry, etc.
 - Need: mean, variance, probability dist.
- Statistics for variable averaging time, T_{av}
 - Requires "relative dispersion" of plume

Borex (Denmark, 1992)

"Passive" or non-buoyant source.

- Approach
 - Lagrangian two-particle dispersion model (L2PDM) driven by large-eddy simulations (LES) of the convective boundary layer (CBL)
- Goal
 - Generate dispersion realizations & statistics for T_{av} 's: 40 s 30 min
 - Demonstrate applicability of L2PDM to mean & fluctuating concentrations using convection tank data
 - Provide numerical data for testing simple models

Applications: Estimate C, σ_c, c_{peak}

- Parameterized CDF
 - Mean (C), Rms ($\sigma_{\mathbf{c}}$), CDF shape
 - Compare L2PDM with Gamma CDF
- Estimate $\sigma_{\mathbf{c}}$ with simpler model
 - Lagrangian "1-particle" model (e.g., Manor, 2014; Ferrero et al, 2017, 2019)
 - Extended meandering plume for $T_{\rm av}$ effects

Cumulative Distribution Function of Concentration Fluctuations

Summary

- Lagrangian particle & LES approach extended to concentration fluctuations with a 2-particle model (L2PDM)
- L2PDM matches mean CWIC and surface concentration fields of earlier 1-particle model and laboratory data in a CBL
- Modeled concentration fluctuation intensity agrees with convection tank data of vertical and surface fluctuation intensity profiles
- L2PDM provides fluctuation intensity, probability distributions of c, and c_{peak} as function of T_{av} over 60 s 2090 s (35 min)
- L2PDM provides data for testing simpler models and applications

Further Work:

Finer resolution LES (CBL) and greater simulation time Finer resolution LES and higher wind speeds (U/w_{*} > 1.5) Weakly stable boundary layer

Cumulative Distribution Function / Probability of c/C as Function of T_{av}

Generation of Concentration Fluctuations

Concentration Fluctuation Intensity (Csanady 1973)

Lagrangian 1- & 2-Particle Dispersion Models

2-particle model Particle Path Particle Path Particle Path Particle Path 2r 1 1 1 2r 1 1 1 2r 1 1 1 2r 1 2r 1 1 2r 1 2r 1 1 2r 2r 2r 1 2r 2r2

 $u_{\rm Ri}$ = resolved LES velocity, particle *i* $u_{\rm Si}$ = stochastic subgrid-scale (SGS) velocity Adopt Thomson's (1990) stochastic model for $u_{\rm Si}$

Concentration

$$c(\mathbf{x},t) = Q \int p_1(\mathbf{x},t;\mathbf{x}_{S1},t_1')dt_1'$$

Concentration Fluctuation Intensity at Surface: L2PDM vs Lab Data, Multiple Source Heights

Peak Surface Concentration as Function of T_{av}

