Evaluation of PBL Parameterizations in WRF at Subkilometer Grid Spacings: Response of Resolved Dry Convection to Parameterized Turbulence

Hyeyum (Hailey) Shin and Jimy Dudhia

National Center for Atmospheric Research

With acknowledgement to Peggy LeMone (NCAR)

Model Grid Spacing: O(0.1-1km)

From "Parameterized" to "Resolved" Turbulence Statistics

At coarse grid spacing

- ✓ **None** of turbulence is **resolved**.
- ✓ **Evaluation** for:

$$\frac{\partial \overline{c}}{\partial t} = \cdots - \frac{\partial w' c'}{\partial z}$$

At finer grid spacing

- ✓ Turbulence is **partially resolved**.
- ✓ Turbulence statistics:

"parameterized" + "resolved"

Mean and parameterized total flux

In this study

The performance of PBL parameterizations in WRF model is re-evaluated at sub-kilometer grid spacings, for resolved turbulence statistics.

Methods

 Evaluation using reference data: <u>spatially filtered LES output</u> The most popular way to obtain "reference" for evaluating parameterizations at kilometric and sub-kilometer scales (Honnert et al. 2011; followed by Dorrestijn et al. 2013; Shin and Hong 2013)

2. PBL schemes selected: <u>characterized by different nonlocal terms</u>

Importance of nonlocal terms in sub-kilometer and kilometric grid spacing

(Honnert et al. 2011; Shin and Hong 2013, 2015)

Reference Data

Spatially filtered LES output for sub-kilometer grid spacing

(Cheng et al. 2010; Honnert et al. 2011; Dorrestijn et al. 2013; Shin and Hong 2013)

reference "subgrid-scale" perturbations:

$$W' = W - W$$

Experimental Setup

An idealized convective boundary layer (CBL)

Model setup

	Subgrid-Scale vertical transport	Subgrid-Scale horizontal transport	Grid spacing (m)	No. of grids	Domain size (km²)
LES	3D TKE	3D TKE	25	320 ²	8 ²
Reference	Filtered from the LES		250, 500, 1000	32 ² , 16 ² , 8 ²	8 ²
Simulations	PBL schemes	3D TKE	250, 500, 1000	32 ²	8 ² , 16 ² , 32 ²

An Overview of PBL Parameterizations in WRF

Representation of unresolved vertical transport

1st-order vs. 1.5-order (TKE) nonlocal vs. local

An important part that determines *a scheme's performance at sub-kilometer grid spacing*

	K _c	C _{NL}
YSU	1 st -order	$C_{NL} = K_c \gamma_c + \overline{w'c'}_h \left(\frac{z}{h}\right)^3$
ACM2	$K_{u,v} = kw_s z \left(1 - \frac{z}{h}\right)^2$	$C_{NL} = M2u\overline{c}_{1}^{\Delta} - M2d_{k}\overline{c}_{k}^{\Delta} + M2d_{k+1}\overline{c}_{k+1}^{\Delta} \frac{\Delta z_{k+1}}{\Delta z_{k}}$
EDMF	1.5-order	$C_{NL} = \mathbf{M}_u \left(c_u - \overline{c}^{\Delta} \right) \ \mathbf{M}_u = a_u w_u$
TEMF	$K_c = l\sqrt{e}S_c$	$C_{NL} = \mathbf{M}_u \left(c_u - \overline{c}^{\Delta} \right) \ \mathbf{M}_u = a_u w_u$
MYNN		0

Temperature Profile

Examples of previous studies

Coarse grid spacing ($\Delta >> I$)

Fine grid spacing ($\Delta \sim I$)

Figure is taken from Shin and Hong (2011)

Figure is taken from LeMone et al. (2013)

Temperature Profile

At sub-kilometer and 1-km grid spacing

- 1. The local PBL scheme reproduces a weakly stable/neutral profile.
 - 2. There is almost no resolution dependency.

Vertical Heat Transport Profile

"Parameterized" vertical heat transport

- 1. None of them are scale-aware: little resolution dependency.
- 2. Each parameterization has its own best-performing grid size.

Parameterizations' Resolution Dependency

"Parameterized" vertical transport <w'θ'> In mixed layer

Parameterizations' Resolution Dependency

Parameterizations' Resolution Dependency

Vertical Heat Transport Profile

YSU and ACM2: 1000 m EDMF: ~500 m TEMF: 250 m MYNN: <250 m

Temperature Profile

Interactions between Parameterized and Resolved Components

All the tested PBL parameterizations reproduce well total (resolved + parameterized) vertical transport, therefore mean temperature profiles.

High-resolution modeling for improving resolved fields

w Spectrum

PDF of w

Statistical representation of the distribution of *w*

Reference: positively skewed (a few strong thermal updrafts surrounded by a large number of weak inter-thermal downdrafts)

Distribution of wat 0.5z_i

Gray Zone

At higher morel resolution, $\Delta \sim O(0.1-1 \text{ km})$: $\Delta \sim I$

Gray-zone problem = "Double counting" problem?

Gray Zone

At higher morel resolution, $\Delta \sim O(0.1-1 \text{ km})$: $\Delta \sim I$

"Partitioning"

Recent development by modifying traditional schemes

Shin and Hong (2015), replacing YSU PBL (Hong et al. 2006) in WRF Boutle et al. (2014), replacing Lock PBL (Lock et al. 2000) in UM