
LLNL-PRES-789577
1

LLNL-PRES-789577 This work was performed under the auspices of the U.S. Department of Energy by
Lawrence Livermore National Laboratory under contract DE-AC52-07NA27344. Lawrence Livermore National
Security, LLC

iWet: The Intelligent WRF Ensemble Tool
Leveraging deep learning hyperparameter tuning frameworks

Meteorology and Climate - Modeling for Air Quality

Derek Jensen, Donald Lucas, Clifford Anderson-Bergman, Sonia Wharton

Data Assimilation & Inverse Modeling

UC Davis Conference Center • September 11-13, 2019

LLNL-PRES-789577
2

Ensembles can be great

 Ensemble Benefits
1. Often provide more accurate forecasts

2. Quantify uncertainty

 Ensembles seek to diagnose error due to
1. Imperfect initial conditions

2. Model imperfections

 Types of Ensembles
— Initial Conditions

— Boundary Conditions (For local-area models)

— Observational Data Assimilation

— Multi-model

— Multi-physics

— Perturbed Physics

 Ensemble Challenges
— Easy to design impossibly large ensembles

— Junk ensemble members artificially inflate uncertainty

— Unsampled sources of uncertainty create false confidence

— Expensive to run and post process

Example Hurricane Spaghetti Plot
https://doi.org/10.1002/wcc.187

https://doi.org/10.1002/wcc.187

LLNL-PRES-789577
3

Intelligent WRF Ensemble Tool Wishlist

 Automate entire WRF workflow
— Download met data

— Generate directory structure

— Minimize duplicate work

— Parallel where possible

— Support restarts

— Convenient for single runs

 WRF Version agnostic
— Modifies user-specified namelist templates

 Lightweight
— Single input deck

 Parameter Sampling
— Run all combinations

— Randomly sample subset

— Intelligently select trials

— Early stopping for low-performing trials

 Address Ensemble Challenges
— Handle large, multi-dimensional ensembles

— Prevent junk ensemble members

— Sample many sources of uncertainty

— Easy to run and post process

WRF model workflow

LLNL-PRES-789577
4

The WRF Ensemble Tool (Wet) is a Good Start

 Automate entire WRF workflow
— Download met data ✔

— Generate directory structure ✔

— Minimize duplicate work ✔

— Parallel where possible ✔
— Support restarts ✔

— Convenient for single runs ✔

 WRF Version agnostic
— Modifies user-specified namelist templates ✔

 Lightweight
— Single input deck ✔

 Parameter Sampling
— Run all combinations ✔

— Randomly sample subset ✔

— Intelligently select trials ❌

— Early stopping for low-performing trials ❌

 Address Ensemble Challenges
— Handle large, multi-dimensional ensembles ❕

— Prevent junk ensemble members ❕

— Sample many sources of uncertainty ✔

— Easy to run ✔ and post process ❌

WRF_NAMELIST_CHANGES = pd.Series(

(’time_control’, ’run_days’): "0, ",

(’time_control’, ’run_hours’): "12, ",

(’physics’, ’mp_physics’): [’1’, ’2’,],

(’physics’, ’bl_pbl_physics’): [’1’, ’2’], })

4-member Wet ensemble validated against radiosonde obs.

LLNL-PRES-789577
5

Tuning ML Models is Analogous to “Tuning” Ensembles

Loss

Function

Learning

Rate

Neuron

Activation

N. Hidden Layers

N. Neurons

Sample Hyperparameters for a fully-

connected DNN that accepts 5 inputs and

returns 2 predictions

 ML performance depends on proper
hyperparameter tuning

 Common Tunable ML Hyperparameters
— Hidden Layers and Units
— Regularization
— Training Strategy
— Etc.

 Tuning Methods
— Manual Search
— Grid/Random Search
— Bayesian Optimization
— Early Stopping
— Reinforcement Learning

Wet

Ugh

iWet

I Wish

LLNL-PRES-789577
6

Intelligent Search – Bayesian Optimization

Aspects of SMBO ML Tuning WRF Ensemble

1. Parameter Space n. layers, dropout, etc. ICBC, DAS, MP, SP

2. Objective Function ML Training Running WRF

3. Surrogate Model e.g. Gaussian Process e.g. Gaussian Process

4. Acquisition Function e.g. Expected Improvement e.g. Expected Improvement

5. Performance History ✔ ✔

 Sequential Model-Based Optimization [1]
— Sequentially fits a probabilistic surrogate model to

samples of an unknown objective function
— An acquisition function chooses the next set of

hyperparameters

(top left) Example of the unknown objective function

and surrogate model and (top right) acquisition function

[2] (bottom) Example of SMBO convergence [3]

[1] Koehrsen, Will “A Conceptual Explanation of Bayesian Hyperparameter Optimization for Machine Learning” Toward Data Science, Jun 24, 2018

[2] Krasser, Martin “Bayesian Optimization” krasserm.github.io, March 21, 2018

LLNL-PRES-789577
7

Intelligent Scheduling – Early Stopping

 Hyperband Early Stopping: Focus on
hyperparameter evaluation, not selection to
optimize your compute resources [3]

 A bandit-based approach to optimization
— Online algorithm to maximize return on investment. Which slot

machine should the gambler play? [4]

 Li et al. reports that intelligent scheduling beats
intelligent search

[3] Li, Lisha, et al. "Hyperband: a novel bandit-based approach to hyperparameter optimization."

The Journal of Machine Learning Research 18.1 (2017): 6765-6816.

[4] Davidson-Pilon, Cameron. Bayesian methods for hackers: probabilistic programming and

Bayesian inference. Addison-Wesley Professional, 2015.

Example of scheduling methods like early stopping [3]

LLNL-PRES-789577
8

Ray Tune Scales Intelligent Search & Scheduling

 Ray is a fast and simple framework for
building and running distributed
applications [5]
— Multi node parallelization
— Graceful error handling
— Efficiently handles large objects
— Easy to implement with a single Python

decorator @ray.remote
— Includes several ML libraries

[5] Moritz et al., “Ray: A Distributed Framework for Emerging AI Applications”

arXiv:1712.05889v2

[6] Liaw et al., “Tune: A Research Platform for Distributed Model Selection and Training” arXiv

preprint arXiv:1807.05118, 2018

 Tune is a Ray library for
hyperparameter tuning at any scale [6]
— Pair a Search algorithm with a scheduler
— Search Algorithms:

• Random Search
• HyperOpt*
• Nevergrad
• Scikit-Optimize

— Schedulers
• Population Based Training
• Hyperband*
• Median Stopping Rule

LLNL-PRES-789577
9

What is an appropriate tuning reward??

 An execution of a WRF trial and subsequent
reward/cost calculation constitute an evaluation of
the objective function to be maximized/minimized

 The user needs to define an appropriate cost/reward

 One Idea: Utilize U. Wyoming’s Weather Web API

 iWet will automatically download specified
radiosonde sites and compute mean-absolute error

http://weather.uwyo.edu/upperair/sounding.html

(name, region, id)

sonde_sites = [('BNA', '72493', 'naconf'),

('BMX', '72230', 'naconf'),

('JAX', '72206', 'naconf')]

http://weather.uwyo.edu/upperair/sounding.html

LLNL-PRES-789577
10

A very hasty “Hello, World!”

Parameter Values

Met ECMWF, GFS

Surface Physics YSU, MYJ, QNSE

Micro Physics Options 0 – 4

 Default WRF 4.0 namelist settings

 Ensemble Parameters:

 2 ∗ 3 ∗ 5 = 30 Possible Combinations

 15 Trials

 Allocate 1 CPU per WRF Run

 Calculate reward every 12 hours of model time

LLNL-PRES-789577
11

Trivial example but iWet appears to work

met mp_phys sfc_phys run n_it best_cycle

MAE

7.687223 ECMWF MP_1 MYJ 15 10 10

7.721463 GFS MP_1 MYJ 3 10 10

13.474602 ECMWF MP_1 QNSE 6 4 4

13.475293 ECMWF MP_2 MYJ 10 4 4

13.475676 ECMWF MP_2 QNSE 13 4 4

 The top-5 Trials

(left) Bayesian sampling (top) MAE as a function of

training iterations – each iteration is 12 hours of

forecast time

LLNL-PRES-789577
12

No member does particularly well

(left) Temperature validation (right) Wind speed validation

LLNL-PRES-789577
13

Conclusions

 Wet automates the entire WRF workflow and can brute
force ensembles

 By utilizing libraries developed for neural network tuning,
we made Wet intelligent

 There is still some cleaning and scaling to address but we
hope to release iWet soon

 We are in the process of developing more interesting studies

