€PA

Precipitation Partitioning Across Grey Zone Scales using Scale-Aware Cloud Formulations: Impacts of Aerosols

Timothy Glotfelty¹, Kiran Alapaty¹, Jian He¹, Patrick Hawbecker², Xiaoliang Song³, and Guang Zhang³

¹National Exposure Research Laboratory, U.S. Environmental Protection Agency, Research Triangle Park, NC, USA

> ²Department of Marine, Earth, and Atmospheric Sciences North Carolina State University, University Park, PA, USA

³Scripps Institution of Oceanography, University of California San Diego, La Jolla, CA, USA

Disclaimer

The views expressed in this presentation are those of the authors and do not necessarily reflect the views or policies of the U.S. Environmental Protection Agency.

Introduction

- Aerosol-Cloud interactions (ACI) remain one of the most uncertain aspects in climate science
- Many climate models do not include complex ACI processes such as aerosol interactions within cumulus clouds and ice nucleation of aerosols
- Even if these complex processes are included in climate models, the treatments are typically not consistent across various spatial scales
- Understanding these processes and their relationship to spatial scales is necessary to accurately quantify anthropogenic influences on Earth's energy balance
- Previous modeling studies have explored the scale dependency of ACI, finding either a limited impact of spatial resolution on aerosol indirect effects (Archer-Nicholls et al., 2016) or reductions in the cloud life time effect at finer spatial resolutions (Ma et al., 2015)
- However, these studies do not simulate both solid and liquid phase ACI in both grid scale and subgrid scale clouds
- This study expands upon past research by employing the new WRF-ACI configuration to explore the scale dependency of ACI across the "grey zone" scales over the continental United States

Objectives

Determine if ACI are scale dependent in the WRF-ACI framework
 Identify the factors that contribute to the scale dependency of ACI

WRF-ACI Configurations

Meteorological Process	Parameterization		
Land Surface Model	NOAH LSM		
Surface Layer	Monin-Obukhov		
Planetary Boundary Layer	Yonsei University (YSU)		
Cumulus/Subgrid Scale Microphysics	Multi-scale Kain-Fritsch (MSKF)/ Song and Zhang, 2011		
Grid Scale Microphysics	Morrison Double Moment (MDM)		
Radiation	Rapid Radiative Transfer Model for GCMs (RRTMG)		
Data Assimilation	FDDA (Free Troposphere) and FASDAS (Surface)		
Configuration	Values		
Horizontal Grid Spacing	36km, 12km, 4km, 1km		
Simulation Period (Domains)	 June 17th -24th 2006 (U.S., Eastern U.S., Southeast, Northern MS) July 23rd-28th 2006 (U.S., Western U.S., Four Corners, Northern CO) 		

Numerical Experiments

- WACI: Default WRF-ACI configuration using bias corrected aerosols from CESM-NCSU
- LAERO: Same configuration as WACI, but with aerosol concentrations lowered by 90%
- WACI-LAERO: The difference between WACI and LAERO illustrates the impact of current aerosol levels on cloud properties, precipitation, and radiation

Figure 1. WRF-ACI Diagram

Figure 2. Process Diagrams for MSKF and associated Subgrid Scale Microphysics

CONFIGURATION DETAILS

WRF-ACI Experiment Configurations						
Time Period	Domain Coverage/Name	Horizontal Resolution				
June 17 th -24 th 2006	Continental United States (CONUS)	36 km				
	Eastern United States (EUS)	12 km				
	Northeast/Mid Atlantic United States (NE)	4 km				
	Southeast United States (SE)	4 km				
	Northern Mississippi (NMS)	1 km				
July 23 rd -28 th 2006	Continental United States (CONUS)	36 km				
	Western United States (WUS)	12 km				
	Four Corners Region (FC)	4 km				
	Northern Colorado (NCO)	1 km				

Mapping of Aerosol Species from CESM-NCSU to WRF-ACI

SZ11 Bulk Aerosol Name	CESM-NCSU Aerosol Mode	CESM-NCSU Species		
Sulfate	Aiken and Accumulation	Sulfate, Nitrate, and Ammonium		
Sea-salt	Fine Sea-salt and Coarse Sea-Salt	Sulfate, Nitrate, Ammonium, Sodium, and Chloride		
Dust 1 50% of Fine Dust Sulfate, Nitr		Sulfate, Nitrate, Ammonium, and Mineral Dust		
Dust 2	50% of Fine Dust	Sulfate, Nitrate, Ammonium, and Mineral Dust		
Dust 3	Dust 3 50% of Coarse Dust Sulfate, Nit:			
Dust 4	50% of Coarse Dust	Sulfate, Nitrate, Ammonium, and Mineral Dust		
Hydrophilic Black Carbon	40% of Accumulation	Black Carbon		
Hydrophobic Black Carbon	Primary Carbon and 60% of Accumulation	Black Carbon		
Hydrophilic Organic Carbon	Aiken and Accumulation	Secondary and Semi-Volatile Organic Aerosol		
Hydrophobic Organic Carbon	Primary Carbon and Accumulation Mode	Primary Organic Aerosol		

Table 1. Process Diagrams for MSKF and associated Subgrid Scale Microphysics

Western U.S. Precip. (WACI-LAERO)

Figure 3. The difference in subgrid scale, grid scale, and total precipitation between the WACI and LAERO simulations over the Four Corners region at 36 km, 12 km, and 4 km.

Eastern U.S. Precip. (WACI-LAERO)

Figure 4. The difference in subgrid scale, grid scale, and total precipitation between the WACI and LAERO simulations over the Southeast region at 36 km, 12 km, and 4 km

Domain Average Impacts

Liquid Water Path

Precipitation

Change in Domain Mean Ice Water Path Enhancement from Aerosols with Horizontal Grid Spacing

Ice Water Path

Shortwave Cloud Forcing

Domain Mean Change in Shortwave Cloud Forcing from Aerosol Indirect Effects

Figure 5. The domain-wide mean change in LWP, IWP, precipitation, and SWCF between the WACI and LAERO simulations for the Northeast, Southeast, Northern Mississippi, Four Corners, and Northern Colorado domains at 36 km (red), 12 km (gold), 4 km (green), and 1 km (purple) grid spacing.

Domain Average Cloud Lifetimes (hr)

		Subgrid Scale				Grid Scale		
Region	Resolution	WACI	LAERO	WACI-LAERO	WACI	LAERO	WACI-LAERO	
Northeast	36 km	2.07	1.25	0.82	27.85	24.75	3.10	
	12 km	0.28	0.24	0.04	2.23	2.20	0.03	
	4 km	0.31	0.23	0.08	2.42	2.48	-0.06	
Southeast	36 km	1.37	1.09	0.28	33.89	23.35	10.54	
	12 km	1.44	1.05	0.39	20.21	17.43	2.78	
	4 km	0.09	0.05	0.04	1.92	1.70	0.23	
Northern MS	36 km	2.09	1.76	0.33	39.09	37.21	1.88	
	12 km	3.05	2.60	0.45	30.95	29.09	1.86	
	4 km	3.14	2.61	0.53	5.15	4.58	0.57	
	1 km	0.59	0.51	0.08	3.15	3.02	0.13	
Four Corners	36 km	3.51	3.13	0.38	27.52	24.11	3.41	
	12 km	2.66	2.33	0.33	15.66	14.53	1.13	
	4 km	0.52	0.43	0.09	4.91	4.18	0.73	
Northern CO	36 km	3.44	4.44	-1.00	20.96	17.52	3.44	
	12 km	0.80	0.84	-0.04	3.55	3.55	0.0	
	4 km	0.02	0.02	0.00	0.09	0.08	0.01	
	1 km	0.68	0.48	0.20	3.87	3.34	0.53	

Table 2. The cloud time scale parameters and difference in cloud time scale parameters between the WACI and LAERO simulations for the Northeast, Southeast, Northern MS, Four Corners, and Northern CO domains at each resolution.

Findings

- Domain average LWP is enhanced at all resolutions in all domains indicating dominance of the cloud lifetime effect
- The cloud lifetime effect decrease with increasing grid spacing due to an increase in the importance of rain drop accretion compared to autoconversion
- The cloud lifetime effect dominates in the eastern U.S. leading to precipitation suppression from aerosols
- In the western U.S. complicated interactions within mixed phase clouds (possibly from the thermodynamic invigoration effect) lead to offsetting minimal impacts of aerosols on precipitation
- The reduced cloud lifetime effect at finer resolutions results in reduced SWCF
- At 12 km grid spacing, equal activity from grid scale and sub-grid scale clouds results in moisture competition that complicates the understanding of ACI at this spatial resolution

Conclusions

- The WRF-ACI experiments indicate that subgrid scale ACI impacts and solid phase ACI are important at coarse resolutions and in mixed phase cloud environments, respectively
- These processes are lacking in coupled regional coupled meteorology-chemistry models and this likely introduces a level of uncertainty/inaccuracy
- The decline in the importance of ACI impacts at finer resolutions likely indicate that aerosol indirect effect estimates from global climate models are overestimated